

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pyrox 0.4.5 documentation

Pyrox

Pyrox is a HTTP reverse proxy that can intercept requests ahead of an upstream
HTTP REST service. This allows reuse of common middleware functions like:
message enhancement, dynamic routing, authentication, authorization, resource
request rate limiting, service distribution, content negotiation and content
transformation. These services can then be scaled horizontally separate the
origin REST endpoint.

Built ontop of the Tornado Async I/O library [http://www.tornadoweb.org/en/stable/]
, the HTTP code inside Pyrox can scale to thousands of concurrent
clients and proxy them to a similar number of upstream REST services.

Getting Started

Below are some helpful documents to help get you started in using Pynsive.

	Building Pyrox
	Requirements

	Installing Pyrox
	Debian Compatible Systems

	Configuring Pyrox

Pyrox Documentation

	Using Pyrox
	Anatomy of HTTP Message Processing

	Writing Your First Filter

	Utilizing Pyrox’s HTTP Model

	Pipeline Processing and Logic

	Pyrox API Documentation
	pyrox Module
	pyrox.http.model Module

	pyrox.filtering.pipeline Module

	pyrox.server.config Module

	pyrox.util.config Module

	Indices

That Legal Thing...

This software library is released to you under the
MIT Software License [http://opensource.org/licenses/MIT]
. See LICENSE [https://github.com/zinic/pynsive/blob/master/LICENSE] for
more information.

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyrox 0.4.5 documentation

Building Pyrox

Requirements

Pyrox is a complex daemon that requires a few things installed in your
development environment before it can be built.

	GCC (Tested on versions 4.6.x and 4.7.x)

	Python Development Libaries

Installing Python Dependencies and Building Pyrox

This requirements file contains requirements related only to Pyrox development
pip install -r tools/dev-requires

This requirements file contains requirements needed to install and run Pyrox
pip install -r tools/pip-requires

This requirements file contains requirements needed to test Pyrox
pip install -r tools/test-requires

This script will auto-build Pyrox and then launch it
./pyrox_dev.sh start

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyrox 0.4.5 documentation

Installing Pyrox

Debian Compatible Systems

Download the correct .deb file for your architecture.

	Debian Wheezy (No Link Available Yet)

	Ubuntu 12.04 LTS [http://166.78.244.178/pool/squeeze/main/p/pyrox/pyrox_0.4.1_amd64.deb]

dpkg -i pyrox_<version>_<arch>.deb
service pyrox start

Configuring Pyrox

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyrox 0.4.5 documentation

Using Pyrox

Anatomy of HTTP Message Processing

Pyrox allows a programmer to hook into the different stages of processing
HTTP messages. There are four stages in total:

	Request Head

	Request Body

	Response Head

	Response Body

Filters that hook into these stages are organized into two pipelines. The
upstream pipeline contains logic that needs to intercept HTTP requests
being sent to an upstream origin service. The downstream pipeline contains
logic that needs to intercept HTTP responses being sent to the downstream
client.

Writing Your First Filter

As a programmer, Pyrox allows you to hook into the various processing stages
of a HTTP message via python decorators. There are decorators specified for
each stage.

Message Head Decorators

Message head decorators must be applied to class functions that answer to one
argument that represents either the request message head or the response
message head.

import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 def on_request_head(self, request_head):
 print('Got request head with verb: {}'.format(request_head.method))

 @filtering.handles_response_head
 def on_response_head(self, response_head):
 print('Got response head with status: {}'.format(response_head.status))

Message Body Decorators

Message body decorators must be applied to class functions that answer to two
arguments. The first argument represents either the request message body or
the response message body chunk being processed. The second argument is a
writable object to which the processed content can be handed off to for
transmission either upstream or downstream (depending on the stage being
processed).

import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_body
 def on_request_body(self, msg_part, output):
 print('Got request content chunk: {}'.format(msg_part))
 output.write(msg_part)

 @filtering.handles_response_body
 def on_response_body(self, msg_part, output):
 print('Got response content chunk: {}'.format(msg_part))
 output.write(msg_part)

Stacking Decorators on Common Functionality

Pyrox decorators may be stacked onto a class function that adheres to the
expected interface.

import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 @filtering.handles_response_head
 def on_head(self, msg_head):
 print('Got msg head: {}'.format(msg_head))

 @filtering.handles_request_body
 @filtering.handles_response_body
 def on_body(self, msg_part, output):
 print('Got message content part: {}'.format(msg_part))
 output.write(msg_part)

Utilizing Pyrox’s HTTP Model

The Pyrox HTTP model is quite feature-full and has many helpers designed to
do their best in making your life easier. Below are come common usage
patterns available.

Passing Arbitrary Data to the Next Filter

Pyrox HTTP request and response objects inherit from a common class called
the HTTP message. The HTTP message has an attribute called local_data which
travels along with the message object to the next filter in the pipeline.
The following filter may then search this attribute for any interesting
data, thus allowing filters to sparingly communicate state without having
to modify the HTTP message itself.

import uuid
import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 def on_request_head(self, request_head):
 request_head.local_data['transaction_id'] = str(uuid.uuid4())
 return filtering.next()

Pipeline Processing and Logic

Pyrox filters may influence how Pyrox handles further processing of the
HTTP message by returning control actions. These control actions are
available for import in the filtering module.

Passing a Message Stage

By default, if a filter returns None, has no return or returns a
FilterAction with the kind class member set to NEXT_FILTER, Pyrox will
continue handing off the HTTP message stage down its associated pipeline to
the next filter.

import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 def on_request_head(self, request_head):
 # Do nothing but pass the stage to the next filter in the
 # filter pipeline
 return filtering.next()

 @filtering.handles_response_head
 def on_response_head(self, response_head):
 # No return also defaults to passing the message stage to the
 # next filter in the pipeline
 pass

Consuming a Message Stage

Consuming a HTTP message stage tells Pyrox to continue proxying the message
but to stop processing it through its associated pipeline.

import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 def on_request_head(self, request_head):
 # Do nothing but consume the http message stage
 return filtering.consume()

Rejecting a Message

Rejecting a HTTP message stage will return to the client with the passed
response message head object. This response object will be serialized and
sent to the client immediately after the function returns.

Note: rejecting a message may not occur during the response body message
stage.

import pyrox.http as http
import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 def on_request_head(self, request_head):
 # Reject the request if it is not a GET request
 if request_head.method != 'GET':
 # Create a response object - this should be a static
 # instanace set elsewhere for performance reasons
 response = http.HttpResponse()
 response.version = '1.1'
 response.status = '405 Method Not Allowed'

 return filtering.reject(response)

Routing a Message

Pyrox allows for a message to be routed to an upstream host target. By
default, messages are proxied to upstream hosts defined in the Pyrox
configuration. When more flexibility is required, a filter action may be
returned that informs Pyrox of the message’s intended upstream destination.

Note: routing a message is only allowed during the request message head
stage.

import pyrox.filtering as filtering

class FilterTest(filtering.HttpFilter):

 @filtering.handles_request_head
 def on_request_head(self, request_head):
 # Do nothing but route the request
 return filtering.route('google.com:80')

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pyrox 0.4.5 documentation

Pyrox API Documentation

pyrox Module

pyrox.http.model Module

	
class pyrox.http.model.HttpHeader(name)[source]

	Bases: object

Defines the fields for a HTTP header

	Attributes:

	
	name A bytearray or string value representing the field-name of

	the header.

	
class pyrox.http.model.HttpMessage(version='1.1')[source]

	Bases: object

Parent class for requests and responses. Many of the elements in the
messages share common structures.

	Attributes:

	
	headers A dictionary of the headers currently stored in this

	HTTP message.

	version A bytearray or string value representing the major-minor

	version of the HttpMessage.

	local_data The local_data variable is a dictionary that may be

	used as a holding place for data that other filters
may then access and utilize. Setting entries in this
dictionary does not modify the HTTP model in anyway.

	
get_header(name)[source]

	Returns the header that matches the name via case-insensitive matching.
Unlike the header function, if the header does not exist then a None
result is returned.

	
header(name)[source]

	Returns the header that matches the name via case-insensitive matching.
If the header does not exist, a new header is created, attached to the
message and returned. If the header already exists, then it is
returned.

	
headers[source]

	

	
remove_header(name)[source]

	Removes the header that matches the name via case-insensitive matching.
If the header exists, it is removed and a result of True is returned.
If the header does not exist then a result of False is returned.

	
replace_header(name)[source]

	Returns a new header with a field set to name. If the header exists
then the header is removed from the request first.

	
set_default_headers()[source]

	Allows messages to set default headers that must be added to the
message before its construction is complete.

	
class pyrox.http.model.HttpRequest[source]

	Bases: pyrox.http.model.HttpMessage

HttpRequest defines the HTTP request attributes that will be available
to a HttpFilter.

	Attributes:

	
	method A bytearray or string value representing the request’s

	method verb.

	url A bytearray or string value representing the requests’

	uri path including the query and fragment string.

	
to_bytes()[source]

	

	
class pyrox.http.model.HttpResponse[source]

	Bases: pyrox.http.model.HttpMessage

HttpResponse defines the HTTP response attributes that will be available
to a HttpFilter.

	Attributes:

	
	status A string representing the response’s status code and

	potentially its human readable component delimited by
a single space.

	
to_bytes()[source]

	

pyrox.filtering.pipeline Module

	
class pyrox.filtering.pipeline.FilterAction(kind=0, payload=None)[source]

	Bases: object

A filter action allows us to tell upstream controls what the filter has
decided as the next course of action. Certain filter actions may include
a response object for serialization out to the client in the case where
the action enforces a rejection.

	Attributes:

	
	kind An integer value representing the kind of action this

	object is intended to communicate.

payload An argument to be passed on to the consumer of this action.

	
breaks_pipeline()[source]

	

	
intercepts_request(sefl)[source]

	

	
is_consuming()[source]

	

	
is_replying()[source]

	

	
is_routing()[source]

	

	
class pyrox.filtering.pipeline.HttpFilter[source]

	Bases: object

HttpFilter is a marker class that may be utilized for dynamic gathering
of filter logic.

	
class pyrox.filtering.pipeline.HttpFilterPipeline[source]

	Bases: object

The filter pipeline represents a series of filters. This pipeline currently
serves bidirectional filtering (request and response). This chain will have
the request head and response head events passed through it during the
lifecycle of a client request. Each request is assigned a new copy of the
chain, meaning that state may not be shared between requests during the
lifetime of the filter chain or its filters.

	Parameters:	chain – A list of HttpFilter objects organized to act as a pipeline
with element 0 being the first to receive events.

	
add_filter(http_filter)[source]

	

	
intercepts_req_body()[source]

	

	
intercepts_resp_body()[source]

	

	
on_request_body(body_part, output)[source]

	

	
on_request_head(request_head)[source]

	

	
on_response_body(body_part, output)[source]

	

	
on_response_head(response_head)[source]

	

	
pyrox.filtering.pipeline.consume()[source]

	Consumes the event and does not allow any further downstream filters to
see it. This effectively halts execution of the filter chain but leaves the
request to pass through the proxy.

	
pyrox.filtering.pipeline.handles_request_body(request_func)[source]

	This function decorator may be used to mark a method as usable for
intercepting request body content.

handles_request_body will intercept the HTTP content in chunks as it
arrives. This method, like others in the filter class may return a
FilterAction.

	
pyrox.filtering.pipeline.handles_request_head(request_func)[source]

	This function decorator may be used to mark a method as usable for
intercepting request head content.

handles_request_head will accept an HttpRequest object and implement
the logic that will define the FilterActions to be applied
to the request

	
pyrox.filtering.pipeline.handles_response_body(request_func)[source]

	This function decorator may be used to mark a method as usable for
intercepting response body content.

handles_response_body will intercept the HTTP content in chunks as they
arrives. This method, like others in the filter class, may return a
FilterAction.

	
pyrox.filtering.pipeline.handles_response_head(request_func)[source]

	This function decorator may be used to mark a method as usable for
intercepting response head content.

handles_response_head will accept an HttpResponse object and implement
the logic that will define the FilterActions to be applied
to the request

	
pyrox.filtering.pipeline.next()[source]

	Passes the current http event down the filter chain. This allows for
downstream filters a chance to process the event.

	
pyrox.filtering.pipeline.reject(response=None)[source]

	Rejects the request that this event is related to. Rejection may happen
during on_request and on_response. The associated response parameter
becomes the response the client should expect to see. If a response
parameter is not provided then the function will default to the configured
default response.

	Parameters:	response – the response object to reply to the client with

	
pyrox.filtering.pipeline.reply(response, src)[source]

	A special type of rejection that implies willful handling of a request.
This call may optionally include a stream or a data blob to take the
place of the response content body.

	Parameters:	response – the response object to reply to the client with

	
pyrox.filtering.pipeline.route(upstream_target)[source]

	Routes the request that this event is related to. Usage of this method will
halt execution of the filter pipeline and begin streaming the request to
the specified upstream target. This method is invalid for handling an
upstream response.

	Parameters:	upstream_target – the URI string of the upstream target to route
to.

pyrox.server.config Module

	
class pyrox.server.config.CoreConfiguration(cfg, defaults=None)[source]

	Bases: pyrox.util.config.ConfigurationPart

Class mapping for the Pyrox core configuration section.

Core section
[core]

	
bind_host[source]

	Returns the host and port the proxy is expected to bind to when
accepting connections. This option defaults to localhost:8080 if left
unset.

bind_host = localhost:8080

	
enable_profiling[source]

	Returns a boolean value representing whether or not Pyrox should
use a special single-process start up and run sequence so that code
may be profiled. If unset, this defaults to False.

NOTE: If enabled, the number of processess Pyrox will be allowed
to spin up will be limited to 1

enable_profiling = True

	
plugin_paths[source]

	Returns a list of directories to plug into when attempting to resolve
the names of pipeline filters. This option may be a single directory or
a comma delimited list of directories.

Any of the below are acceptable
plugin_paths = /usr/share/project/python
plugin_paths = /usr/share/project/python,/usr/share/other/python
plugin_paths = /opt/pyrox/stock, /opt/pyrox/contrib

	
processes[source]

	Returns the number of processes Pyrox should spin up to handle
messages. If unset, this defaults to 1.

processes = 75

	
class pyrox.server.config.LoggingConfiguration(cfg, defaults=None)[source]

	Bases: pyrox.util.config.ConfigurationPart

Class mapping for the Pyrox logging configuration section.

Logging section
[logging]

	
console[source]

	Returns a boolean representing whether or not Pyrox should write to
stdout for logging purposes. This value may be either True of False. If
unset this value defaults to False.

console = True

	
logfile[source]

	Returns the log file the system should write logs to. When set, Pyrox
will enable writing to the specified file for logging purposes If unset
this value defaults to None.

logfile = /var/log/pyrox/pyrox.log

	
verbosity[source]

	Returns the type of log messages that should be logged. This value may
be one of the following: DEBUG, INFO, WARNING, ERROR or CRITICAL. If
unset this value defaults to WARNING.

verbosity = DEBUG

	
class pyrox.server.config.PipelineConfiguration(cfg, defaults=None)[source]

	Bases: pyrox.util.config.ConfigurationPart

Class mapping for the Pyrox pipeline configuration section.

Pipeline section
[pipeline]

Configuring a pipeline requires the admin to first configure aliases to
each filter referenced. This is done by adding a named configuration
option to this section that does not match “upstream” or “downstream.”
Filter aliases must point to a class or function that returns a filter
instance with the expected entry points.

After the filter aliases are specified, they may be then organized in
comma delimited lists and assigned to either the “upstream” option for
filters that should receive upstream events or the “downstream” option
for filters that should receive downstream events.

In the context of Pyrox, upstream events originate from the requesting
client also known as the request. Downstream events originate from the
origin service (the upstream request target) and is also known as the
response.

[pipeline]
 filter_1 = myfilters.upstream.Filter1
 filter_2 = myfilters.upstream.Filter2
 filter_3 = myfilters.downstream.Filter3

 upstream = filter_1, filter_2
 downstream = filter_3

	
downstream[source]

	Returns the list of filters configured to handle downstream events.
This configuration option must be a comma delimited list of filter
aliases. If left unset this option defaults to an empty tuple.

downstream = filter_3

	
upstream[source]

	Returns the list of filters configured to handle upstream events.
This configuration option must be a comma delimited list of filter
aliases. If left unset this option defaults to an empty list.

upstream = filter_1, filter_2

	
use_singletons[source]

	Returns a boolean value representing whether or not Pyrox should
reuse filter instances for up and downstream aliases. This means,
effectively, that a filter specified in both pipelines will
maintain its state for the request and response lifecycle. If left
unset this option defaults to false.

use_singletons = True

	
class pyrox.server.config.RoutingConfiguration(cfg, defaults=None)[source]

	Bases: pyrox.util.config.ConfigurationPart

Class mapping for the Pyrox routing configuration section.

Routing section
[routing]

	
upstream_hosts[source]

	Returns a list of downstream hosts to proxy requests to. This may be
set to either a single valid URL string or a comma delimited list of
valid URI strings. This option defaults to http://localhost:80 if
left unset.

upstream_hosts = http://host:port, https://host:port

	
class pyrox.server.config.SSLConfiguration(cfg, defaults=None)[source]

	Bases: pyrox.util.config.ConfigurationPart

Class mapping for the Portal configuration section ‘ssl’

	
cert_file[source]

	Returns the path of the cert file for SSL configuration within
Pyrox. If left unset the value will default to None.

	::

	cert_file = /etc/pyrox/ssl/server.cert

	
key_file[source]

	Returns the path of the key file for SSL configuration within
Pyrox. If left unset the value will default to None.

	::

	key_file = /etc/pyrox/ssl/server.key

	
class pyrox.server.config.TemplatesConfiguration(cfg, defaults=None)[source]

	Bases: pyrox.util.config.ConfigurationPart

Class mapping for the Pyrox teplates configuration section.

Templates section
[templates]

	
pyrox_error_sc[source]

	Returns the status code to be set for any error that happens within
Pyrox that would prevent normal service of client requests. If left
unset this option defaults to 502.

pyrox_error_sc = 502

	
rejection_sc[source]

	Returns the default status code to be set for client request
rejection made with no provided response object to serialize. If
left unset this option defaults to 400.

rejection_sc = 400

	
pyrox.server.config.load_pyrox_config(location)[source]

	

pyrox.util.config Module

	
class pyrox.util.config.Configuration(cfg_cls_list, cfg, defaults)[source]

	Bases: object

	
exception pyrox.util.config.ConfigurationError(msg)[source]

	Bases: exceptions.Exception

	
class pyrox.util.config.ConfigurationPart(cfg, defaults=None)[source]

	Bases: object

A configuration part is an OO abstraction for a ConfigParser that allows
for ease of documentation and usage of configuration options. All
subclasses of ConfigurationPart must follow a naming convention. A
configuration part subclass must start with the name of its section. This
must then be followed by the word “Configuration.” This convention results
in subclasses with names similar to: CoreConfiguration and
LoggingConfiguration.

A configuration part subclass will have its section set to the lowercase
name of the subclass sans the word such that a subclass with the name,
“LoggingConfiguration” will reference the ConfigParser section “logging”
when looking up options.

	
get(option)[source]

	

	
getboolean(option)[source]

	

	
getint(option)[source]

	

	
has_option(option)[source]

	

	
name()[source]

	

	
options()[source]

	

	
pyrox.util.config.load_config(cfg_module_name, location, defaults=None)[source]

	

Indices

	Index

	Module Index

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Pyrox 0.4.5 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyrox	

 	
 	
 pyrox.filtering.pipeline	

 	
 	
 pyrox.http.model	

 	
 	
 pyrox.server.config	

 	
 	
 pyrox.util.config	

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Pyrox 0.4.5 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	add_filter() (pyrox.filtering.pipeline.HttpFilterPipeline method)

B

 	

 	bind_host (pyrox.server.config.CoreConfiguration attribute)

 	

 	breaks_pipeline() (pyrox.filtering.pipeline.FilterAction method)

C

 	

 	cert_file (pyrox.server.config.SSLConfiguration attribute)

 	Configuration (class in pyrox.util.config)

 	ConfigurationError

 	ConfigurationPart (class in pyrox.util.config)

 	

 	console (pyrox.server.config.LoggingConfiguration attribute)

 	consume() (in module pyrox.filtering.pipeline)

 	CoreConfiguration (class in pyrox.server.config)

D

 	

 	downstream (pyrox.server.config.PipelineConfiguration attribute)

E

 	

 	enable_profiling (pyrox.server.config.CoreConfiguration attribute)

F

 	

 	FilterAction (class in pyrox.filtering.pipeline)

G

 	

 	get() (pyrox.util.config.ConfigurationPart method)

 	get_header() (pyrox.http.model.HttpMessage method)

 	

 	getboolean() (pyrox.util.config.ConfigurationPart method)

 	getint() (pyrox.util.config.ConfigurationPart method)

H

 	

 	handles_request_body() (in module pyrox.filtering.pipeline)

 	handles_request_head() (in module pyrox.filtering.pipeline)

 	handles_response_body() (in module pyrox.filtering.pipeline)

 	handles_response_head() (in module pyrox.filtering.pipeline)

 	has_option() (pyrox.util.config.ConfigurationPart method)

 	header() (pyrox.http.model.HttpMessage method)

 	headers (pyrox.http.model.HttpMessage attribute)

 	

 	HttpFilter (class in pyrox.filtering.pipeline)

 	HttpFilterPipeline (class in pyrox.filtering.pipeline)

 	HttpHeader (class in pyrox.http.model)

 	HttpMessage (class in pyrox.http.model)

 	HttpRequest (class in pyrox.http.model)

 	HttpResponse (class in pyrox.http.model)

I

 	

 	intercepts_req_body() (pyrox.filtering.pipeline.HttpFilterPipeline method)

 	intercepts_request() (pyrox.filtering.pipeline.FilterAction method)

 	intercepts_resp_body() (pyrox.filtering.pipeline.HttpFilterPipeline method)

 	

 	is_consuming() (pyrox.filtering.pipeline.FilterAction method)

 	is_replying() (pyrox.filtering.pipeline.FilterAction method)

 	is_routing() (pyrox.filtering.pipeline.FilterAction method)

K

 	

 	key_file (pyrox.server.config.SSLConfiguration attribute)

L

 	

 	load_config() (in module pyrox.util.config)

 	load_pyrox_config() (in module pyrox.server.config)

 	

 	logfile (pyrox.server.config.LoggingConfiguration attribute)

 	LoggingConfiguration (class in pyrox.server.config)

N

 	

 	name() (pyrox.util.config.ConfigurationPart method)

 	

 	next() (in module pyrox.filtering.pipeline)

O

 	

 	on_request_body() (pyrox.filtering.pipeline.HttpFilterPipeline method)

 	on_request_head() (pyrox.filtering.pipeline.HttpFilterPipeline method)

 	on_response_body() (pyrox.filtering.pipeline.HttpFilterPipeline method)

 	

 	on_response_head() (pyrox.filtering.pipeline.HttpFilterPipeline method)

 	options() (pyrox.util.config.ConfigurationPart method)

P

 	

 	PipelineConfiguration (class in pyrox.server.config)

 	plugin_paths (pyrox.server.config.CoreConfiguration attribute)

 	processes (pyrox.server.config.CoreConfiguration attribute)

 	pyrox (module)

 	pyrox.filtering.pipeline (module)

 	

 	pyrox.http.model (module)

 	pyrox.server.config (module)

 	pyrox.util.config (module)

 	pyrox_error_sc (pyrox.server.config.TemplatesConfiguration attribute)

R

 	

 	reject() (in module pyrox.filtering.pipeline)

 	rejection_sc (pyrox.server.config.TemplatesConfiguration attribute)

 	remove_header() (pyrox.http.model.HttpMessage method)

 	replace_header() (pyrox.http.model.HttpMessage method)

 	

 	reply() (in module pyrox.filtering.pipeline)

 	route() (in module pyrox.filtering.pipeline)

 	RoutingConfiguration (class in pyrox.server.config)

S

 	

 	set_default_headers() (pyrox.http.model.HttpMessage method)

 	

 	SSLConfiguration (class in pyrox.server.config)

T

 	

 	TemplatesConfiguration (class in pyrox.server.config)

 	

 	to_bytes() (pyrox.http.model.HttpRequest method)

 	

 	(pyrox.http.model.HttpResponse method)

U

 	

 	upstream (pyrox.server.config.PipelineConfiguration attribute)

 	upstream_hosts (pyrox.server.config.RoutingConfiguration attribute)

 	

 	use_singletons (pyrox.server.config.PipelineConfiguration attribute)

V

 	

 	verbosity (pyrox.server.config.LoggingConfiguration attribute)

 Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/file.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Pyrox 0.4.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pyrox 0.4.5 documentation »

 All modules for which code is available

		pyrox.filtering.pipeline

		pyrox.http.model

		pyrox.server.config

		pyrox.util.config

 © Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

_modules/pyrox/filtering/pipeline.html

 Navigation

 		
 index

 		
 modules |

 		Pyrox 0.4.5 documentation »

 		Module code »

 Source code for pyrox.filtering.pipeline

import inspect

from pyrox.http import HttpResponse
from pyrox.log import get_logger

_LOG = get_logger(__name__)

"""
Action enumerations.
"""
NEXT_FILTER = 0
CONSUME = 1
REJECT = 2
ROUTE = 3
REPLY = 4

_ACTION_NAMES = {
 0: 'NEXT_FILTER',
 1: 'CONSUME',
 2: 'REJECT',
 3: 'ROUTE',
 4: 'REPLY'
}

_BREAKING_ACTIONS = (CONSUME, REJECT, ROUTE, REPLY)

[docs]class FilterAction(object):
 """
 A filter action allows us to tell upstream controls what the filter has
 decided as the next course of action. Certain filter actions may include
 a response object for serialization out to the client in the case where
 the action enforces a rejection.

 Attributes:
 kind An integer value representing the kind of action this
 object is intended to communicate.
 payload An argument to be passed on to the consumer of this action.
 """
 def __init__(self, kind=NEXT_FILTER, payload=None):
 self.kind = kind
 self.payload = payload

[docs] def breaks_pipeline(self):
 return self.kind in _BREAKING_ACTIONS

[docs] def intercepts_request(sefl):
 return self.is_replying()

[docs] def is_consuming(self):
 return self.kind == CONSUME

[docs] def is_replying(self):
 return self.kind == REPLY

[docs] def is_routing(self):
 return self.kind == ROUTE

 def __str__(self):
 return 'Action({}) - Is breaking flow: {}'.format(
 _ACTION_NAMES[self.kind], self.breaks_pipeline())

[docs]def handles_request_head(request_func):
 """
 This function decorator may be used to mark a method as usable for
 intercepting request head content.

 handles_request_head will accept an HttpRequest object and implement
 the logic that will define the FilterActions to be applied
 to the request
 """
 request_func._handles_request_head = True
 return request_func

[docs]def handles_request_body(request_func):
 """
 This function decorator may be used to mark a method as usable for
 intercepting request body content.

 handles_request_body will intercept the HTTP content in chunks as it
 arrives. This method, like others in the filter class may return a
 FilterAction.
 """
 request_func._handles_request_body = True
 return request_func

[docs]def handles_response_head(request_func):
 """
 This function decorator may be used to mark a method as usable for
 intercepting response head content.

 handles_response_head will accept an HttpResponse object and implement
 the logic that will define the FilterActions to be applied
 to the request
 """
 request_func._handles_response_head = True
 return request_func

[docs]def handles_response_body(request_func):
 """
 This function decorator may be used to mark a method as usable for
 intercepting response body content.

 handles_response_body will intercept the HTTP content in chunks as they
 arrives. This method, like others in the filter class, may return a
 FilterAction.
 """
 request_func._handles_response_body = True
 return request_func

[docs]class HttpFilter(object):
 """
 HttpFilter is a marker class that may be utilized for dynamic gathering
 of filter logic.
 """
 pass

"""
Default return object. This should be configurable.
"""
_DEFAULT_REJECT_RESP = HttpResponse()
_DEFAULT_REJECT_RESP.version = b'1.1'
_DEFAULT_REJECT_RESP.status = '400 Bad Request'
_DEFAULT_REJECT_RESP.header('Content-Length').values.append('0')

"""
Default filter action singletons.
"""
_DEFAULT_PASS_ACTION = FilterAction(NEXT_FILTER)
_DEFAULT_CONSUME_ACTION = FilterAction(CONSUME)

[docs]def consume():
 """
 Consumes the event and does not allow any further downstream filters to
 see it. This effectively halts execution of the filter chain but leaves the
 request to pass through the proxy.
 """
 return _DEFAULT_CONSUME_ACTION

[docs]def reply(response, src):
 """
 A special type of rejection that implies willful handling of a request.
 This call may optionally include a stream or a data blob to take the
 place of the response content body.

 :param response: the response object to reply to the client with
 """
 if response == None:
 raise TypeError('The response of a reply must be a response.')

 return FilterAction(REPLY, (response, src))

[docs]def reject(response=None):
 """
 Rejects the request that this event is related to. Rejection may happen
 during on_request and on_response. The associated response parameter
 becomes the response the client should expect to see. If a response
 parameter is not provided then the function will default to the configured
 default response.

 :param response: the response object to reply to the client with
 """
 return FilterAction(REPLY, (response,)) if response != None\
 else FilterAction(REPLY, (_DEFAULT_REJECT_RESP,))

[docs]def route(upstream_target):
 """
 Routes the request that this event is related to. Usage of this method will
 halt execution of the filter pipeline and begin streaming the request to
 the specified upstream target. This method is invalid for handling an
 upstream response.

 :param upstream_target: the URI string of the upstream target to route
 to.
 """
 return FilterAction(ROUTE, upstream_target)

[docs]def next():
 """
 Passes the current http event down the filter chain. This allows for
 downstream filters a chance to process the event.
 """
 return _DEFAULT_PASS_ACTION

[docs]class HttpFilterPipeline(object):
 """
 The filter pipeline represents a series of filters. This pipeline currently
 serves bidirectional filtering (request and response). This chain will have
 the request head and response head events passed through it during the
 lifecycle of a client request. Each request is assigned a new copy of the
 chain, meaning that state may not be shared between requests during the
 lifetime of the filter chain or its filters.

 :param chain: A list of HttpFilter objects organized to act as a pipeline
 with element 0 being the first to receive events.
 """
 def __init__(self):
 self._req_head_chain = list()
 self._req_body_chain = list()
 self._resp_head_chain = list()
 self._resp_body_chain = list()

[docs] def intercepts_req_body(self):
 return len(self._req_body_chain) > 0

[docs] def intercepts_resp_body(self):
 return len(self._resp_body_chain) > 0

[docs] def add_filter(self, http_filter):
 filter_methods = inspect.getmembers(http_filter, inspect.ismethod)

 for method in filter_methods:
 if len(method) < 1:
 continue

 finst = method[1]
 _LOG.debug('Checking function instance {} for decorators'.format(finst))

 # Assume that if an attribute exists then it is decorated
 if hasattr(finst, '_handles_request_head'):
 _LOG.debug('Function instance {} handles request head'.format(finst))
 self._req_head_chain.append((http_filter, finst))

 if hasattr(finst, '_handles_request_body'):
 _LOG.debug('Function instance {} handles request body'.format(finst))
 self._req_body_chain.append((http_filter, finst))

 if hasattr(finst, '_handles_response_head'):
 _LOG.debug('Function instance {} handles response head'.format(finst))
 self._resp_head_chain.append((http_filter, finst))

 if hasattr(finst, '_handles_response_body'):
 _LOG.debug('Function instance {} handles response body'.format(finst))
 self._resp_body_chain.append((http_filter, finst))

 def _on_head(self, chain, head):
 last_action = next()

 for http_filter, method in chain:
 try:
 action = method(head)
 except Exception as ex:
 _LOG.exception(ex)
 action = reject()
 if action:
 last_action = action
 if action.breaks_pipeline():
 break

 return last_action

 def _on_body(self, chain, body_part, output):
 last_action = next()

 for http_filter, method in chain:
 try:
 action = method(body_part, output)
 except Exception as ex:
 _LOG.exception(ex)
 action = reject()

 if action:
 last_action = action
 if action.breaks_pipeline():
 break

 return last_action

[docs] def on_request_head(self, request_head):
 return self._on_head(self._req_head_chain, request_head)

[docs] def on_request_body(self, body_part, output):
 return self._on_body(self._req_body_chain, body_part, output)

[docs] def on_response_head(self, response_head):
 return self._on_head(self._resp_head_chain, response_head)

[docs] def on_response_body(self, body_part, output):
 return self._on_body(self._resp_body_chain, body_part, output)

 © Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_modules/pyrox/util/config.html

 Navigation

 		
 index

 		
 modules |

 		Pyrox 0.4.5 documentation »

 		Module code »

 Source code for pyrox.util.config

import os.path
import pynsive

from ConfigParser import ConfigParser

def _find_cfg_classes(module):
 def configuration_objects_only(cls):
 return issubclass(cls, ConfigurationPart)

 return pynsive.list_classes(module, configuration_objects_only)

[docs]def load_config(cfg_module_name, location, defaults=None):
 if not os.path.isfile(location):
 raise ConfigurationError(
 'Unable to locate configuration file: {}'.format(location))

 cfg = ConfigParser()
 cfg.read(location)

 return Configuration(_find_cfg_classes(cfg_module_name), cfg, defaults)

[docs]class ConfigurationError(Exception):

 def __init__(self, msg):
 self.msg = msg

 def __str__(self):
 return self.msg

[docs]class Configuration(object):

 def __init__(self, cfg_cls_list, cfg, defaults):
 self._cfg_objects = dict()

 for cfg_cls in cfg_cls_list:
 cfg_object = cfg_cls(cfg, defaults)
 self._cfg_objects[cfg_object.name()] = cfg_object

 def __getattr__(self, name):
 return self._cfg_objects.get(name)

[docs]class ConfigurationPart(object):
 """
 A configuration part is an OO abstraction for a ConfigParser that allows
 for ease of documentation and usage of configuration options. All
 subclasses of ConfigurationPart must follow a naming convention. A
 configuration part subclass must start with the name of its section. This
 must then be followed by the word "Configuration." This convention results
 in subclasses with names similar to: CoreConfiguration and
 LoggingConfiguration.

 A configuration part subclass will have its section set to the lowercase
 name of the subclass sans the word such that a subclass with the name,
 "LoggingConfiguration" will reference the ConfigParser section "logging"
 when looking up options.
 """

 def __init__(self, cfg, defaults=None):
 self._cfg = cfg
 self._name = self.name()
 self._defaults = dict() if not defaults else defaults

 def __getattr__(self, name):
 return self.get(name)

 def _get_default(self, option):
 namespace = self._defaults.get(self._name)
 return namespace.get(option) if namespace else None

[docs] def name(self):
 return type(self).__name__.replace('Configuration', '').lower()

[docs] def options(self):
 return self._cfg.options(self._name)

[docs] def has_option(self, option):
 return self._cfg.has_option(self._name, option)

[docs] def get(self, option):
 if self.has_option(option):
 return self._cfg.get(self._name, option)
 else:
 return self._get_default(option)

[docs] def getboolean(self, option):
 if self.has_option(option):
 return self._cfg.getboolean(self._name, option)
 else:
 return self._get_default(option)

[docs] def getint(self, option):
 if self.has_option(option):
 return self._cfg.getint(self._name, option)
 else:
 return self._get_default(option)

 © Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

_modules/pyrox/server/config.html

 Navigation

 		
 index

 		
 modules |

 		Pyrox 0.4.5 documentation »

 		Module code »

 Source code for pyrox.server.config

from pyrox.util.config import (load_config, ConfigurationPart,
 ConfigurationError)

_DEFAULTS = {
 'core': {
 'processes': 1,
 'enable_profiling': False,
 'bind_host': 'localhost:8080'
 },
 'ssl': {
 'cert_file': None,
 'key_file': None
 },
 'routing': {
 'upstream_hosts': None
 },
 'pipeline': {
 'use_singletons': False
 },
 'templates': {
 'pyrox_error_sc': 502,
 'rejection_sc': 400
 },
 'logging': {
 'console': True,
 'logfile': None,
 'verbosity': 'WARNING'
 }
}

def _split_and_strip(values_str, split_on):
 if split_on in values_str:
 return (value.strip() for value in values_str.split(split_on))
 else:
 return (values_str,)

def _host_tuple(host_str):
 parts = host_str.split(':')

 if len(parts) == 1:
 return (parts[0], 80)
 elif len(parts) == 2:
 return (parts[0], int(parts[1]))
 else:
 raise ConfigurationError('Malformed host: {}'.format(host_str))

[docs]def load_pyrox_config(location):
 if location is None:
 location = '/etc/pyrox/pyrox.conf'

 return load_config('pyrox.server.config', location, _DEFAULTS)

[docs]class CoreConfiguration(ConfigurationPart):
 """
 Class mapping for the Pyrox core configuration section.
 ::
 # Core section
 [core]
 """
 @property
[docs] def processes(self):
 """
 Returns the number of processes Pyrox should spin up to handle
 messages. If unset, this defaults to 1.
 ::
 processes = 75
 """
 return self.getint('processes')

 @property
[docs] def enable_profiling(self):
 """
 Returns a boolean value representing whether or not Pyrox should
 use a special single-process start up and run sequence so that code
 may be profiled. If unset, this defaults to False.

 NOTE: If enabled, the number of processess Pyrox will be allowed
 to spin up will be limited to **1**
 ::
 enable_profiling = True
 """
 return self.getboolean('enable_profiling')

 @property
[docs] def plugin_paths(self):
 """
 Returns a list of directories to plug into when attempting to resolve
 the names of pipeline filters. This option may be a single directory or
 a comma delimited list of directories.
 ::
 # Any of the below are acceptable
 plugin_paths = /usr/share/project/python
 plugin_paths = /usr/share/project/python,/usr/share/other/python
 plugin_paths = /opt/pyrox/stock, /opt/pyrox/contrib
 """
 paths = self.get('plugin_paths')
 if paths:
 return [path for path in _split_and_strip(paths, ',')]
 else:
 return list()

 @property
[docs] def bind_host(self):
 """
 Returns the host and port the proxy is expected to bind to when
 accepting connections. This option defaults to localhost:8080 if left
 unset.
 ::
 bind_host = localhost:8080
 """
 return self.get('bind_host')

[docs]class SSLConfiguration(ConfigurationPart):
 """
 Class mapping for the Portal configuration section 'ssl'
 """
 @property
[docs] def cert_file(self):
 """
 Returns the path of the cert file for SSL configuration within
 Pyrox. If left unset the value will default to None.

 ::
 cert_file = /etc/pyrox/ssl/server.cert
 """
 return self.get('cert_file')

 @property
[docs] def key_file(self):
 """
 Returns the path of the key file for SSL configuration within
 Pyrox. If left unset the value will default to None.

 ::
 key_file = /etc/pyrox/ssl/server.key
 """
 return self.get('key_file')

[docs]class LoggingConfiguration(ConfigurationPart):
 """
 Class mapping for the Pyrox logging configuration section.
 ::
 # Logging section
 [logging]
 """
 @property
[docs] def console(self):
 """
 Returns a boolean representing whether or not Pyrox should write to
 stdout for logging purposes. This value may be either True of False. If
 unset this value defaults to False.
 ::
 console = True
 """
 return self.get('console')

 @property
[docs] def logfile(self):
 """
 Returns the log file the system should write logs to. When set, Pyrox
 will enable writing to the specified file for logging purposes If unset
 this value defaults to None.
 ::
 logfile = /var/log/pyrox/pyrox.log
 """
 return self.get('logfile')

 @property
[docs] def verbosity(self):
 """
 Returns the type of log messages that should be logged. This value may
 be one of the following: DEBUG, INFO, WARNING, ERROR or CRITICAL. If
 unset this value defaults to WARNING.
 ::
 verbosity = DEBUG
 """
 return self.get('verbosity')

[docs]class PipelineConfiguration(ConfigurationPart):
 """
 Class mapping for the Pyrox pipeline configuration section.
 ::
 # Pipeline section
 [pipeline]

 Configuring a pipeline requires the admin to first configure aliases to
 each filter referenced. This is done by adding a named configuration
 option to this section that does not match "upstream" or "downstream."
 Filter aliases must point to a class or function that returns a filter
 instance with the expected entry points.

 After the filter aliases are specified, they may be then organized in
 comma delimited lists and assigned to either the "upstream" option for
 filters that should receive upstream events or the "downstream" option
 for filters that should receive downstream events.

 In the context of Pyrox, upstream events originate from the requesting
 client also known as the request. Downstream events originate from the
 origin service (the upstream request target) and is also known as the
 response.
 ::
 [pipeline]
 filter_1 = myfilters.upstream.Filter1
 filter_2 = myfilters.upstream.Filter2
 filter_3 = myfilters.downstream.Filter3

 upstream = filter_1, filter_2
 downstream = filter_3

 """
 @property
[docs] def use_singletons(self):
 """
 Returns a boolean value representing whether or not Pyrox should
 reuse filter instances for up and downstream aliases. This means,
 effectively, that a filter specified in both pipelines will
 maintain its state for the request and response lifecycle. If left
 unset this option defaults to false.
 ::
 use_singletons = True
 """
 return self.getboolean('use_singletons')

 @property
[docs] def upstream(self):
 """
 Returns the list of filters configured to handle upstream events.
 This configuration option must be a comma delimited list of filter
 aliases. If left unset this option defaults to an empty list.
 ::
 upstream = filter_1, filter_2
 """
 return self._pipeline_for('upstream')

 @property
[docs] def downstream(self):
 """
 Returns the list of filters configured to handle downstream events.
 This configuration option must be a comma delimited list of filter
 aliases. If left unset this option defaults to an empty tuple.
 ::
 downstream = filter_3
 """
 return self._pipeline_for('downstream')

 def _pipeline_for(self, stream):
 pipeline = list()
 filters = self._filter_dict()
 pipeline_str = self.get(stream)
 if pipeline_str:
 for pl_filter in _split_and_strip(pipeline_str, ','):
 if pl_filter in filters:
 pipeline.append(filters[pl_filter])
 return pipeline

 def _filter_dict(self):
 filters = dict()
 for pfalias in self.options():
 if pfalias == 'downstream' or pfalias == 'upstream':
 continue
 filters[pfalias] = self.get(pfalias)
 return filters

[docs]class TemplatesConfiguration(ConfigurationPart):
 """
 Class mapping for the Pyrox teplates configuration section.
 ::
 # Templates section
 [templates]
 """
 @property
[docs] def pyrox_error_sc(self):
 """
 Returns the status code to be set for any error that happens within
 Pyrox that would prevent normal service of client requests. If left
 unset this option defaults to 502.
 ::
 pyrox_error_sc = 502
 """
 return self.getint('pyrox_error_sc')

 @property
[docs] def rejection_sc(self):
 """
 Returns the default status code to be set for client request
 rejection made with no provided response object to serialize. If
 left unset this option defaults to 400.
 ::
 rejection_sc = 400
 """
 return self.getint('rejection_sc')

[docs]class RoutingConfiguration(ConfigurationPart):
 """
 Class mapping for the Pyrox routing configuration section.
 ::
 # Routing section
 [routing]
 """
 @property
[docs] def upstream_hosts(self):
 """
 Returns a list of downstream hosts to proxy requests to. This may be
 set to either a single valid URL string or a comma delimited list of
 valid URI strings. This option defaults to http://localhost:80 if
 left unset.
 ::
 upstream_hosts = http://host:port, https://host:port
 """
 hosts = self.get('upstream_hosts')

 if hosts is not None:
 return [host for host in _split_and_strip(hosts, ',')]
 return None

 © Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

_modules/pyrox/http/model.html

 Navigation

 		
 index

 		
 modules |

 		Pyrox 0.4.5 documentation »

 		Module code »

 Source code for pyrox.http.model

from .model_util import request_to_bytes, response_to_bytes, strval

_EMPTY_HEADER_VALUES = ()

[docs]class HttpHeader(object):
 """
 Defines the fields for a HTTP header

 Attributes:
 name A bytearray or string value representing the field-name of
 the header.
 """
 def __init__(self, name):
 self.name = name
 self.values = list()

[docs]class HttpMessage(object):
 """
 Parent class for requests and responses. Many of the elements in the
 messages share common structures.

 Attributes:
 headers A dictionary of the headers currently stored in this
 HTTP message.

 version A bytearray or string value representing the major-minor
 version of the HttpMessage.

 local_data The local_data variable is a dictionary that may be
 used as a holding place for data that other filters
 may then access and utilize. Setting entries in this
 dictionary does not modify the HTTP model in anyway.
 """
 def __init__(self, version='1.1'):
 self.version = version
 self.local_data = dict()

 self._headers = dict()
 self.set_default_headers()

[docs] def set_default_headers(self):
 """
 Allows messages to set default headers that must be added to the
 message before its construction is complete.
 """
 pass

 @property
[docs] def headers(self):
 return self._headers

[docs] def header(self, name):
 """
 Returns the header that matches the name via case-insensitive matching.
 If the header does not exist, a new header is created, attached to the
 message and returned. If the header already exists, then it is
 returned.
 """
 nameval = strval(name)
 header = self._headers.get(nameval, None)
 if not header:
 header = HttpHeader(name)
 self._headers[nameval] = header
 return header

[docs] def replace_header(self, name):
 """
 Returns a new header with a field set to name. If the header exists
 then the header is removed from the request first.
 """
 self.remove_header(name)
 return self.header(name)

[docs] def get_header(self, name):
 """
 Returns the header that matches the name via case-insensitive matching.
 Unlike the header function, if the header does not exist then a None
 result is returned.
 """
 return self._headers.get(strval(name), None)

[docs] def remove_header(self, name):
 """
 Removes the header that matches the name via case-insensitive matching.
 If the header exists, it is removed and a result of True is returned.
 If the header does not exist then a result of False is returned.
 """
 nameval = strval(name)
 if nameval in self._headers:
 del self._headers[nameval]
 return True
 return False

[docs]class HttpRequest(HttpMessage):
 """
 HttpRequest defines the HTTP request attributes that will be available
 to a HttpFilter.

 Attributes:
 method A bytearray or string value representing the request's
 method verb.
 url A bytearray or string value representing the requests'
 uri path including the query and fragment string.
 """
 def __init__(self):
 super(HttpRequest, self).__init__()
 self.method = None
 self.url = None

[docs] def to_bytes(self):
 return request_to_bytes(self)

[docs]class HttpResponse(HttpMessage):
 """
 HttpResponse defines the HTTP response attributes that will be available
 to a HttpFilter.

 Attributes:
 status A string representing the response's status code and
 potentially its human readable component delimited by
 a single space.
 """
 def __init__(self):
 super(HttpResponse, self).__init__()
 self.status = None

[docs] def to_bytes(self):
 return response_to_bytes(self)

 © Copyright 2013, John Hopper.
 Created using Sphinx 1.2.2.

